

DVCH2800D Series

HIGH RELIABILITY HYBRID DC-DC CONVERTERS

DESCRIPTION

The DVCH series of high reliability DC-DC converters is operable over the full military (-55 °C to +125 °C) temperature range with no power derating. Unique to the DVCH series are robust and effective input and output filters which provide dramatically reduced input and output noise performance when compared to other manufacturers competing devices. Operating at a nominal fixed frequency of 400 kHz, these regulated, isolated units utilize a high speed magnetic feedback design and well controlled undervoltage lockout circuitry to eliminate slow start-up problems.

These converters are designed and manufactured in a facility qualified to ISO9001 and certified to MIL-PRF-38534 and MIL-STD-883.

This product may incorporate one or more of the following U.S. patents:

5,784,266 5,790,389 5,963,438 5,999,433 6,005,780 6,084,792 6,118,673

FEATURES

- High Reliability
- Very Low Output Noise
- Wide Input Voltage Range: 12 to 50 Volts per MIL-STD-704
- Up to 1.5 Watts Output Power
- Fault Tolerant Magnetic Feedback Circuit
- NO Use of Optoisolators
- Undervoltage Lockout
- Indefinite Short Circuit Protection
- Current Limit Protection
- Industry Standard Pinout
- High Input Transient Voltage: 80 Volts for 1 sec per MIL-STD-704A
- Precision Projection Welded Hermetic Package
- High Power Density: > 7 W/in³
- Custom Versions Available
- Additional Environmental Screening Available
- Meets MIL-STD-461 Revisions C, D, E and F EMC Requirements When Used With VPT's EMI Filters
- MIL-PRF-38534 Element Evaluated Components
- Space Applications should consider VPT's "S" Series of Radiation Tolerant Power Conversion Devices. Contact VPT for details.

Figure 1 – DVCH2800D DC-DC Converter (Exact marking may differ from that shown)

Sales Information: Phone: (425) 353-3010 Fax: (425) 353-4030 E-mail: vptsales@vpt-inc.com

DVCH2800D Series

SPECIFICATIONS ($T_{CASE} = -55$ °C to +125°C, $V_{IN} = +28V \pm 5\%$, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS Input Voltage (Continuous) $50 V_{DC}$ Junction Temperature Rise to Case +5°C Input Voltage (Transient, 1 second) 80 Volts Storage Temperature -65°C to +150°C Output Power¹ 1.5 Watts Lead Solder Temperature (10 seconds) 270°C Power Dissipation (Full Load, $T_{CASE} = +125^{\circ}C$) 0.6 Watts Weight (Maximum) 11 Grams ESD Rating per MIL-PRF-38534 3A

Parameter		O a malitia ma	DVCH2805D			DVCH2812D			l luite
		Conditions	Min	Тур	Max	Min	Тур	Max	Units
STATIC									
INPUT		Continuous	12	28	50	12	28	50	V
Voltage⁴		Transient, 1 sec	-	-	80	-	-	80	V
Commont.		Inhibited	-	-	3.5	-	-	3.5	mA
Current		No Load	-	-	10	-	-	12	mA
Ripple Current		Full Load, 20Hz to 10MHz	-	-	30	-	-	30	mA _{p-p}
Inhibit Pin Input⁴			0	-	1.5	0	-	1.5	V
Inhibit Pin Open Circuit Volta	ge ⁴		8.0	9.0	11.0	8.0	9.0	11.0	V
UVLO Turn On			6.5	-	11.5	6.5	-	11.5	V
OUTPUT	$\pm V_{\text{OUT}}$	T _{CASE} = 25°C	4.95	5.00	5.05	11.88	12.0	12.12	V
Voltage	$\pm V_{\text{OUT}}$	T _{CASE} = -55°C to +125°C	4.80	5.00	5.20	11.52	12.0	12.48	V
Power ³	Total		0	-	1.5	0	-	1.5	W
Power	$\pm V_{\text{OUT}}$	Either Output	0	-	1.2	0	-	1.2	W
Current ³	I _{OUT}	Either Output	0	-	0.24	0	-	0.1	Α
Ripple Voltage	±V _{OUT}	Full Load, 20Hz to 10MHz	-	-	50	-	-	100	mV_{p-p}
Line Regulation	$\pm V_{\text{OUT}}$	V _{IN} = 12V to 50V	-	-	150	-	-	150	mV
Load Regulation	$\pm V_{\text{OUT}}$	10% Load to Full Load	-	-	400	-	-	700	mV
Load Regulation	$\pm V_{\text{OUT}}$	50% Load to Full Load	-	-	250	-	-	250	mV
EFFICIENCY			72	79	-	74	79	-	%
LOAD FAULT POWER DISSIPAT	TION	Overload ⁴	-	-	3	-	-	3	W
LOAD FAULT POWER DISSIPA	HON	Short Circuit	-	-	4	-	-	4.5	W
CAPACITIVE LOAD⁴			-	-	500	-	-	200	μF
SWITCHING FREQUENCY			325	400	475	325	400	475	kHz
ISOLATION		500 V _{DC}	100	-	-	100	-	-	ΜΩ
MTBF (MIL-HDBK-217F)		AIF @ T _C = 55°C	-	841	-	-	841	-	kHrs
DYNAMIC									
Load Step Output Transient	$\pm V_{\text{OUT}}$	Holf Load to Fill Land	-	100	300	-	100	300	mV_{PK}
Load Step Recovery ² Half Load to Full Load		Hair Load to Full Load	-	200	500	-	100	400	μSec
Line Step Output Transient ⁴	±V _{OUT}	V 40V/4- 50V/	-	200	400	-	300	600	mV_{PK}
Line Step Recovery ^{2, 4}		$V_{IN} = 12V \text{ to } 50V$	-	400	600	-	300	600	μSec
Turn On Delay	±V _{OUT}	V 0V/4-00V	-	15	20	-	15	20	mSec
Turn On Overshoot		$V_{IN} = 0V \text{ to } 28V$	-	0	25	-	0	50	mV_{PK}

Notes:

- 1. Dependant on output voltage.
- 2. Time for output voltage to settle within 1% of its nominal value.
- 3. Derate linearly to 0 at 135°C.
- 4. Verified by qualification testing.

SPECIFICATIONS ($T_{CASE} = -55$ °C to +125°C, $V_{IN} = +28V \pm 5\%$, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	50 V _{DC}	Junction Temperature Rise to Case	+5°C
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	1.5 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	0.6 Watts	Weight (Maximum)	11 Grams
ESD Rating per MIL-PRF-38534	3A		

Parameter		O a malitia ma	D	Unito		
		Conditions	Min	Тур	Max	Units
STATIC						
INPUT		Continuous	12	28	50	V
Voltage ⁴		Transient, 1 sec	-	-	80	٧
Current		Inhibited	-	-	3.5	mA
Current		No Load	-	-	14	mA
Ripple Current		Full Load, 20Hz to 10MHz	-	-	30	mA _{p-p}
Inhibit Pin Input⁴			0	-	1.5	V
Inhibit Pin Open Circuit V	oltage ⁴		8.0	9.0	11.0	V
UVLO Turn On			6.5	-	11.5	V
OUTPUT	$\pm V_{\text{OUT}}$	T _{CASE} = 25°C	14.85	15.0	15.15	V
Voltage	$\pm V_{\text{OUT}}$	T _{CASE} = -55°C to +125°C	14.40	15.0	15.60	V
Power ³	Total		0	-	1.5	W
Powei	$\pm V_{\text{OUT}}$	Either Output	0	-	1.2	W
Current ³	I _{out}	Either Output	0	-	0.08	Α
Ripple Voltage	Ripple Voltage ±V _{OUT}		-	-	100	mV_{p-p}
Line Regulation	Line Regulation ±V _{OUT}		-	-	150	mV
Load Regulation ±V _{OUT}		10% Load to Full Load	-	-	700	mV
Load Regulation	$\pm V_{\text{OUT}}$	50% Load to Full Load	-	-	250	mV
EFFICIENCY			74	79	-	%
LOAD FALL T DOWED DIOODATION		Overload ⁴	-	-	3	W
LOAD FAULT POWER DISSI	PATION	Short Circuit	-	-	4.5	W
CAPACITIVE LOAD⁴			-	-	200	μF
SWITCHING FREQUENCY			325	400	475	kHz
ISOLATION		500 V _{DC}	100	-	-	ΜΩ
MTBF (MIL-HDBK-217F)		AIF @ T _C = 55°C	-	841	-	kHrs
DYNAMIC						
Load Step Output Transient ±V _{OUT} Load Step Recovery ²		Half Land to Folk and	-	100	300	mV_{PK}
		Half Load to Full Load	-	100	400	μSec
Line Step Output Transient ⁴ ±V _{OUT}		V = 40V/45 F0V/	-	300	600	mV_{PK}
Line Step Recovery ^{2, 4}		V _{IN} = 12V to 50V	-	300	600	μSec
Turn On Delay	$\pm V_{\text{OUT}}$	\/ - 0\/ to 20\/	-	15	20	mSec
Turn On Overshoot		$V_{IN} = 0V \text{ to } 28V$	-	0	50	mV_{PK}

- Notes: 1. Dependant on output voltage. 2. Time for output voltage to settle within 1% of its nominal value. 3. Derate linearly to 0 at 135°C. 4. Verified by qualification testing.

DVCH2800D Series

BLOCK DIAGRAM

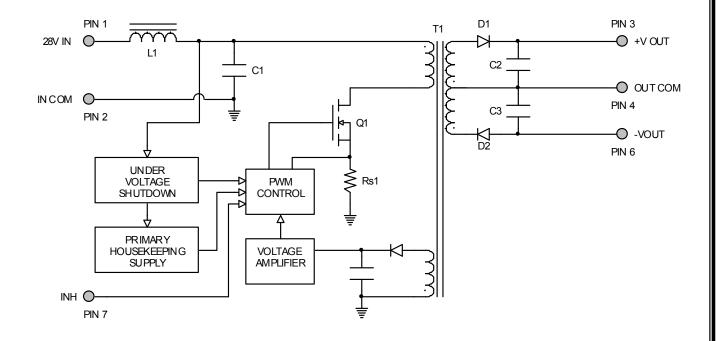


Figure 2

CONNECTION DIAGRAM

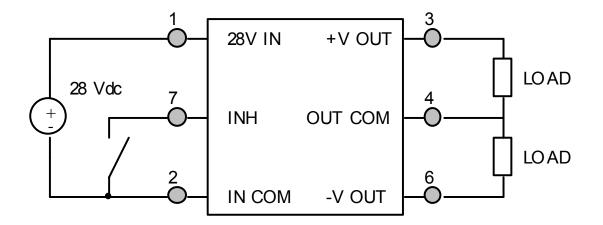
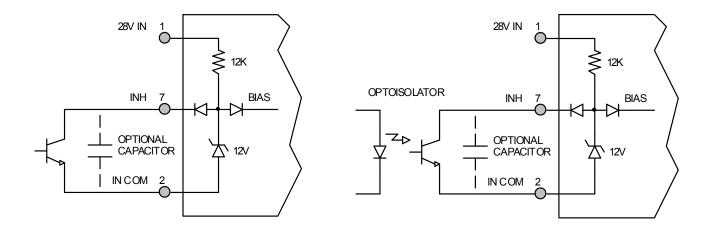



Figure 3

INHIBIT DRIVE CONNECTION DIAGRAMS

Figure 4 – Internal Inhibit Circuit and Recommended Drive (Shown with optional capacitor for turn-on delay)

Figure 5 – Isolated Inhibit Drive (Shown with optional capacitor for turn-on delay)

EMI FILTER HOOKUP DIAGRAM

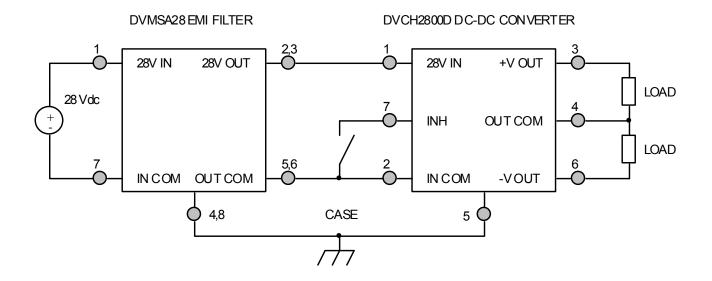


Figure 6 – Converter with EMI Filter

EFFICIENCY PERFORMANCE CURVES (T_{CASE} = 25°C, Full Load, Unless Otherwise Specified)

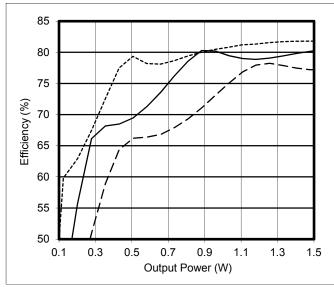
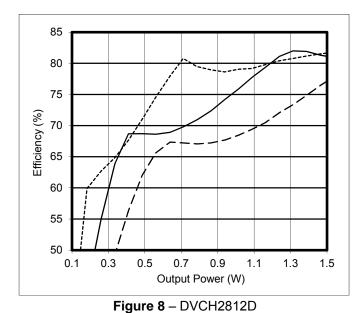



Figure 7 – DVCH2805D Efficiency (%) vs. Output Power (W)

Efficiency (%) vs. Output Power (W)

6

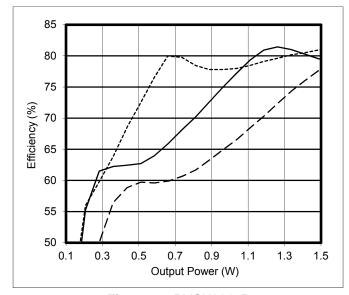


Figure 9 – DVCH2815D Efficiency (%) vs. Output Power (W)

 $\textbf{CROSS REGULATION CURVES} \ \, (\textbf{T}_{\text{CASE}} = 25^{\circ}\text{C}, \, \textbf{Full Load}, \, \textbf{Unless Otherwise Specified})$

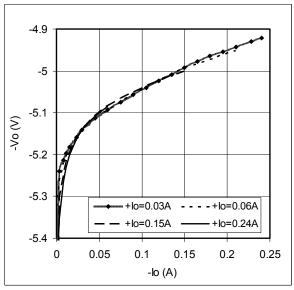


Figure 10 – DVCH2805D -Vout (V) vs. -lout (A)

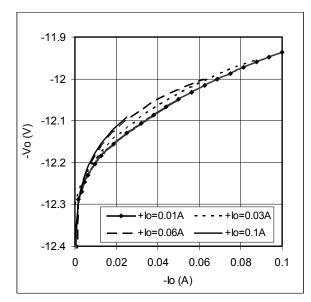


Figure 11 – DVCH2812D -Vout (V) vs. -lout (A)

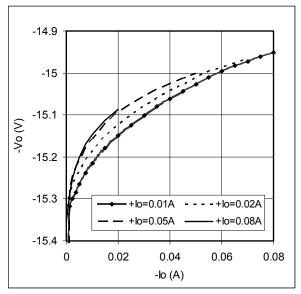


Figure 12 – DVCH2815D -Vout (V) vs. -lout (A)

EMI PERFORMANCE CURVES

(T_{CASE} = 25°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

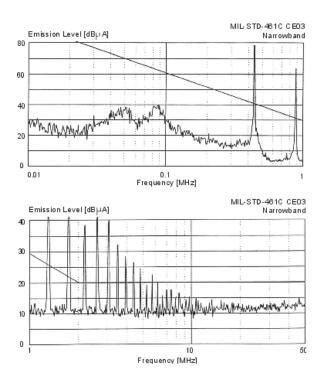
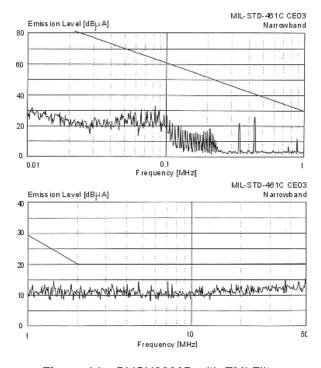
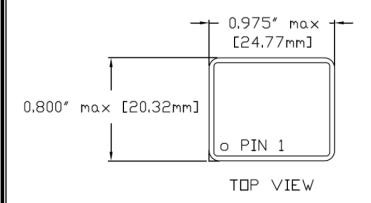
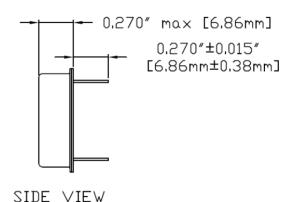
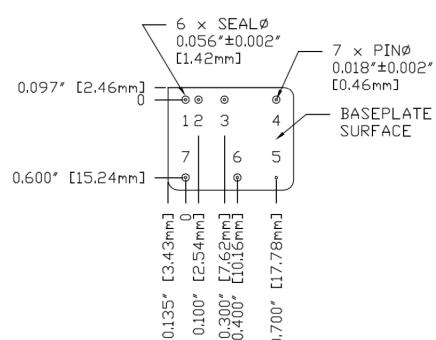


Figure 13 – DVCH2800D without EMI Filter


Figure 14 – DVCH2800D with EMI Filter

PACKAGE SPECIFICATIONS

NOTES:

- 1. DIMENSIONAL LIMITS

 ARE ±0.005" UNLESS

 OTHERWISE STATED.
- 2. CASE TEMPERATURE IS MEASURED ON THE CENTER OF THE BASEPLATE.
- 3. MATERIALS:

 CASE: STEEL, GOLD

 OVER NICKEL

 PLATED.

 COVER: STEEL,

 NICKEL PLATED.

 PINS: ALLOY 52,

 GOLD OVER NICKEL

 PLATED.

 PIN SEALS: GLASS

BOTTOM VIEW

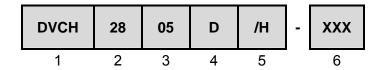
Pin	Function	Pin	Function
1	28V IN	5	CASE
2	IN COM	6	-V OUT
3	+V OUT	7	INHIBIT
4	OUT COM		

Figure 15 - Package and Pinout

PACKAGE PIN DESCRIPTION

Pin	Function	Description
1	28V IN	Positive Input Voltage Connection
2	IN COM	Input Common Connection
3	+V OUT	Positive Output Voltage Connection
4	OUT COM	Output Common Connection
5	CASE	Case Connection
6	-V OUT	Negative Output Voltage Connection
7	INHIBIT	Logic Low = Disabled Output. Connecting the inhibit pin to input common causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL.

ENVIRONMENTAL SCREENING (100% Tested Per MIL-STD-883 as referenced to MIL-PRF-38534)


Test	MIL-STD-883 Test Method, Condition	No Suffix (Standard) Non-QML ⑤	/ES (Extended) Non-QML ⑤	/H (Class H)	/K (Class K)
Non-Destructive Bond Pull	TM2023	• 4	4	• 4	•
Internal Visual	TM2010, TM2017, TM2032 (MIL-STD-750, TM2072, TM2073)	•	•	•	•
Temperature Cycling	TM1010, Condition C -65°C to 150°C, Ambient TM1010, Condition B -55°C to 125°C, Ambient		•	•	•
Constant Acceleration	TM2001, 3000g, Y1 Direction TM2001, 500g, Y1 Direction		•	•	•
PIND ⑦	TM2020, Condition A				•
Pre Burn-In Electrical	25°C				•
Burn-In	TM1015, 320 hrs, 125°C, Case Typ TM1015, 160 hrs, 125°C, Case Typ 96 hrs, 125°C, Case Typ 24 hrs, 125°C, Case Typ	•	•	•	•
Final Electrical	MIL-PRF-38534, Group A Subgroups 1-6 -55°C, 25°C, 125°C ③			•	•
	MIL-PRF-38534, Group A Subgroups 1 and 4 25°C	•	•		
Hermeticity (Seal)	TM1014, Fine Leak, Condition A2 TM1014, Gross Leak, Condition C Gross Leak, Dip (1 x 10 ⁻³)	•	•	•	•
Radiography ®	TM2012				•
External Visual	TM2009	•	•	•	•

Notes:

- Contact Sales for more information concerning additional environmental screening and testing options desired. VPT Inc. reserves the right to ship higher screened or SMD products to meet lower screened orders at our sole discretion unless specifically forbidden by customer contract.
- 100% R&R testing with all test data included in product shipment.
- Not required per MIL-PRF-38534. Test is performed for additional product quality assurance. Non-QML products may not meet all requirements of MIL-PRF-38534.
- Note intentionally not used.
- PIND test Certificate of Compliance included in product shipment.
- Radiographic test Certificate of Compliance and film(s) or data CD included in product shipment.

ORDERING INFORMATION

(1) (2)

Product Series	Nominal Input Voltage		Output	Voltage
DVCH	28	28 Volts	05 12 15	5 Volts 12 Volts 15 Volts

(4) (5) (6)

Number o	ber of Outputs Screening Code ¹		Additional Screening Code	
D	Dual	None /ES /H /K	Standard Extended Class H Class K	Contact Sales

Notes: 1. VPT Inc. reserves the right to ship higher screened or SMD products to meet lower screened orders at our sole discretion unless specifically forbidden by customer contract.

Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications.

SMD (STANDARD MICROCIRCUIT DRAWING) NUMBERS

Standard Microcircuit	DVCH2800D Series		
Drawing (SMD)	Similar Part Number		
5962-0924301HXC	DVCH2805D/H		
5962-0924301KXC	DVCH2805D/K		
5962-0924302HXC	DVCH2812D/H		
5962-0924302KXC	DVCH2812D/K		
5962-0924303HXC	DVCH2815D/H		
5962-0924303KXC	DVCH2815D/K		

Do not use the DVCH2800D Series similar part number for SMD product acquisition. It is listed for reference only. For exact specifications for the SMD product, refer to the SMD drawing. SMD's can be downloaded from the DLA Land and Maritime (Previously known as DSCC) website at http://www.dscc.dla.mil/programs/smcr/. The SMD number listed above is standard gold plated lead finish and no RHA (Radiation Hardness Assurance) level. Please reference the SMD for other screening levels, lead finishes, and radiation levels. All SMD products are marked with a "Q" on the cover as specified by the QML certification mark requirement of MIL-PRF-38534.

CONTACT INFORMATION

To request a quotation or place orders please contact your sales representative or the VPT Inc. Sales Department at:

Phone: (425) 353-3010 **Fax**: (425) 353-4030

E-mail: vptsales@vpt-inc.com

All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.